| C5-C6 | $1.520(4)$ | C15-N16 | $1.459(3)$ |
| :--- | :--- | :--- | :--- |
| C6-C7 | $1.542(4)$ | $\mathrm{N} 16-\mathrm{C} 17$ | $1.455(3)$ |
| $\mathrm{C} 7-\mathrm{C} 8$ | $1.528(4)$ | $\mathrm{C} 18-\mathrm{N} 19$ | $1.136(4)$ |
| $\mathrm{C} 7-\mathrm{C} 17$ | $1.530(4)$ |  |  |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$ | $113.5(2)$ | $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$ | $105.6(2)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10$ | $112.2(2)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $109.3(2)$ |
| $\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 10$ | $110.8(2)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$ | $110.8(2)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 18$ | $110.4(2)$ | $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11$ | $112.8(2)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 20$ | $111.6(2)$ | $\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 9$ | $112.2(2)$ |
| $\mathrm{C} 18-\mathrm{C} 2-\mathrm{C} 20$ | $108.1(2)$ | $\mathrm{N} 16-\mathrm{C} 11-\mathrm{C} 12$ | $108.8(2)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ | $110.2(2)$ | $\mathrm{N} 16-\mathrm{C} 11-\mathrm{C} 9$ | $110.6(2)$ |
| $\mathrm{C} 18-\mathrm{C} 2-\mathrm{C} 3$ | $107.7(2)$ | $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$ | $111.9(2)$ |
| $\mathrm{C} 20-\mathrm{C} 2-\mathrm{C} 3$ | $108.8(2)$ | $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$ | $112.6(3)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $112.3(2)$ | $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$ | $111.1(3)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $108.8(2)$ | $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ | $110.5(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $112.9(2)$ | $\mathrm{N} 16-\mathrm{C} 15-\mathrm{C} 14$ | $111.0(3)$ |
| $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$ | $112.3(2)$ | $\mathrm{C} 17-\mathrm{N} 16-\mathrm{C} 15$ | $110.8(2)$ |
| $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$ | $109.5(2)$ | $\mathrm{C} 17-\mathrm{N} 16-\mathrm{C} 11$ | $110.4(2)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $110.9(2)$ | $\mathrm{C} 15-\mathrm{N} 16-\mathrm{C} 11$ | $111.7(2)$ |
| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 17$ | $109.0(2)$ | $\mathrm{N} 16-\mathrm{C} 17-\mathrm{C} 7$ | $112.7(2)$ |
| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$ | $109.0(2)$ | $\mathrm{N} 19-\mathrm{C} 18-\mathrm{C} 2$ | $178.9(3)$ |
| $\mathrm{C} 17-\mathrm{C} 7-\mathrm{C} 6$ | $113.0(2)$ |  |  |

Data collection: Kuma KM-4 User's Guide (Kuma, 1992). Cell refinement: Kuma KM-4 User's Guide. Data reduction: Kuma KM-4 User's Guide. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989). Software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates, complete geometry, including bond distances and angles involving H atoms, and torsion angles have been deposited with the IUCr (Reference: BK1085). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Borowiak, T., Bokii, N. G. \& Struchkov, Yu. T. (1973). Zh. Strukt. Khim. 14, 387-388.
Katrusiak, A., Figas, E., Kałuski, Z. \& Lesiewicz, D. (1989). Acta Cryst. C45, 1758-1760.
Klyne, S., Scopes, P. N., Thomas, R. N., Skolik, J., Gawroński, J. \& Wiewiórowski, M. (1974). J. Chem Soc. Perkin Trans. 1, pp. 2565-2570.
Kubicki, M., Borowiak, T. \& Boczoń, W. (1991). J. Crystallogr. Spectrosc. Res. 21, 575-579.
Kuma (1992). Kuma KM-4 User's Guide. Version 6.0. Kuma Diffraction, Wrocław, Poland.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skolik, J., Krueger, P. J. \& Wiewiórowski, M. (1970). J. Mol. Struct. 5, 461-475.

Acta Cryst. (1995). C51, 1160-1 164

# Conformationally Defined Cyclohexyl Carnitine Analogs 

Wayne J. Broullette, Gary M. Gray* and Ashraf Saeed<br>Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA

(Received 24 January 1994; accepted 9 September 1994)

## Abstract

Three diastereoisomers of racemic (3-carboxy-2-hydroxy-1-cyclohexyl) trimethylammonium chloride $\left[\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{3}^{+} . \mathrm{Cl}^{-}\right.$; $(1 S, 2 S, 3 S)(2)$, $(1 R, 2 S, 3 S)$ (3) and ( $1 S, 2 R, 3 S$ ) (4)] were designed as rigid analogs for different low-energy conformational states of carnitine [(1), (3-carboxy-2-hydroxy-1-propyl)trimethylammonium chloride]. Structures (2)-(4) all assume a chair conformation in the solid state, in which the bulky trimethylammonio group occupies the equatorial position. As such, the orientations about C2-C3 in (2), (3) and (4) are all essentially the same as that found for (1) in the solid state (torsion angles for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$ near $180^{\circ}$ ), while the orientations about $\mathrm{C} 1-\mathrm{C} 2$ in (2)(4) are such that each diastereoisomer contains a different one of the three possible low-energy staggered conformations predicted for (1) in solution. Comparisons between (1) and (2)-(4) in the solid state revealed that diastereoisomers (2), (3) and (4) provide rigid models for the major low-energy conformations of carnitine.

## Comment

( $R$ )-Carnitine (1) is important in cellular metabolism as a substrate for several different carnitine acyltransferases. Structure (1) is conformationally flexible and determining the protein-bound conformation for (1) with each of the acyltransferases is of considerable pharmacological interest. Studies by others (Colucci \& Gandour, 1988) have suggested that protein-bound (1) contains a gauche relationship between N 1 and O 3 [atoms were numbered as in (2)-(4) for easy comparison]. This conformation about $\mathrm{C} 2-\mathrm{C} 3$ also exists in the crystal structure of (1) (Tomita, Urabe, Kim \& Fujiwara, 1974) and is favored in solution (Colucci, Gandour \& Mooberry, 1986). However, the protein-bound conformation for (1) about $\mathrm{C} 1-\mathrm{C} 2$ has not been determined and two of the three possible low-energy staggered conformations are nearly equally favored in solution (Colucci, Gandour \& Mooberry, 1986). As part of a study to address this question, we synthesized racemic cyclohexyl carnitine analogs (2), (3) and (4) (Brouillette, Saeed, Abuelyaman, Hutchison, Wolkowicz \& McMillin, 1994).

(1)

(2)

(3)

(4)

It was anticipated that structures (2)-(4) would each exist in a 'locked' chair form, with the bulky trimethylammonio group occupying the equatorial position, thus providing conformationally rigid analogs of (1). Consequently, (2)-(4) each contain the desired gauche relationship between N 1 and O 3 but different low-energy staggered conformations about $\mathrm{C} 1-\mathrm{C} 2$. In order to confirm the relative stereochemical assignments and to assure that diastereoisomer (4), which contains two substituents in the axial position, does not favor a twisted-boat conformation in the solid state, the crystal structures for the hydrochloride salts of (2), (3) and (4) were solved.

Observed bond angles and distances in racemic (2), (3) and (4) are in relatively good agreement with those for ( $R$ )-carnitine (1). The exceptions are that the N 1 C 3 bond distance is longer and the $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$ bond angle is narrower for racemates (2)-(4), presumably due to extra steric crowding from C4.

Among the selected torsion angles in Table 2, those given for (1) (except $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O} 2$ ) are of greatest interest since they define the spatial relationship between the carboxyl, hydroxyl and ammonio groups, which for (1) are involved in enzyme binding or enzymatic reaction. Comparison of these torsion angles indicates that the conformation of (3) most closely resembles that of (1) in the solid state, except that in (3) C7-$\mathrm{Cl}-\mathrm{C} 2-\mathrm{O} 3$ is about $23^{\circ}$ smaller than in (1). The large deviation between (1) and (3) for C2-C1-C7-02 (the carboxyl group orientation) likely results from differences in crystal packing forces. Racemic (2) and (4), like (3), also maintain the desired gauche relationship between N1 and O3. The deviation of the $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$ torsion angle from the ideal angle of $60^{\circ}$ is largest in (4), which has two axial groups. Structures (2)-(4) each exhibit different low-energy staggered conformations about $\mathrm{C} 1-\mathrm{C} 2$ that were earlier predicted to predominate for (1) in solution (Colucci, Gandour \& Mooberry, 1986), and the C7-C1-C203 torsion angles are, in all cases, relatively close to the desired torsion angles of 60 or $180^{\circ}$. Structures (2)-(4) thus provide rigid structural models for the major low-
energy conformations of carnitine that are observed in the solid state and in solution.

For structures (2) and (3), intermolecular hydrogen bonding is similar to that observed for carnitine hydrochloride (1) (Tomita, Urabe, Kim \& Fujiwara, 1974). In (1)-(3) the chloride ion mediates interactions between molecules by accepting a hydrogen bond from O 1 of one molecule and O 3 of the adjacent molecule. In structure (4) only the former hydrogen bond is observed.

(b)

(c)

Fig. 1. Atom-numbering scheme and displacement ellipsoids drawn at the $50 \%$ probability level for (a) (2), (b) (3) and (c) (4). H atoms are drawn with arbitrary radii.


Fig. 2. The unit cell for (a) (2), (b) (3) and (c) (4).

## Experimental

Crystals of racemic (2)-(4), which were synthesized by methods developed in our laboratory, were prepared by the slow vapor diffusion of diethyl ether into a saturated solution in ethanol. Melting points were (2) 522-522.5, (3) 479.5-481 and (4) $510-511 \mathrm{~K}$. Crystals were cut to the appropriate sizes and then mounted on glass fibers with Super Glue gel.

## Structure (2)

## Crystal data

$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{3}^{+} . \mathrm{Cl}^{-}$
$M_{r}=237.73$
Monoclinic
$P 2_{1} / n$
$a=6.418(1) \AA$
$b=15.864$ (3) $\AA$
$c=12.269(2) \AA$
$\beta=102.38(1)^{\circ}$
$V=1220.2(6) \AA^{3}$
$Z=4$
$D_{x}=1.293 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction:
empirical
$T_{\text {min }}=0.872, T_{\text {max }}=$ 0.999

2735 measured reflections 2665 independent reflections

Refinement
Refinement on $F$
$R=0.0507$
$w R=0.0712$
$S=2.172$
1981 reflections
195 parameters
Only coordinates of H atoms refined ( $\mathrm{O}-\mathrm{H} 0.81-0.87$, C-H 0.85-1.05 $\AA$ )
$w=1 / \sigma^{2}\left(F_{o}\right)$

## Structure (3)

## Crystal data

$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{3}^{+} . \mathrm{Cl}^{-}$
$M_{r}=237.73$
Monoclinic
Cc
$a=12.390(1) \AA$
$b=8.245$ (2) $\AA$
$c=13.732(1) \AA$
$\beta=121.543$ (9) ${ }^{\circ}$
$V=1195.6$ (3) $\AA^{3}$
$Z=4$
$D_{x}=1.321 \mathrm{Mg} \mathrm{m}^{-3}$
$(\Delta / \sigma)_{\max }=0.02$
$\Delta \rho_{\text {max }}=0.251 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.301 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1963)
Extinction coefficient: $1.5(3) \times 10^{-6}$
Atomic scattering factors from Cromer \& Waber (1974)
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=25-35^{\circ}$
$\mu=2.73 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle cut into block
$0.55 \times 0.49 \times 0.32 \mathrm{~mm}$
Colorless

1981 observed reflections
$[I \geq 3 \sigma(I)]$
$\theta_{\text {max }}=74^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 19$
$l=0 \rightarrow 15$
3 standard reflections frequency: 60 min intensity decay: $-4.0 \%$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=25-35^{\circ}$
$\mu=2.79 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Needle cut into block
$0.65 \times 0.62 \times 0.46 \mathrm{~mm}$
Colorless

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
empirical
$T_{\min }=0.899, T_{\max }=$
0.998
1301 measured reflections
1272 independent reflections

## Refinement

Refinement on $F$
$R=0.025$ (or 0.034)
$w R=0.0332$ (or 0.054 )
$S=1.415$ (or 1.21)
1242 reflections
197 parameters
Only coordinates of H atoms refined ( $\mathrm{O}-\mathrm{H} 0.76-0.79$, C-H 0.89-1.14 $\AA$ )
$w=1 / \sigma^{2}\left(F_{o}\right)$

Structure (4)
Crystal data
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{3}^{+} . \mathrm{Cl}^{-}$
$M_{r}=237.73$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=7.123$ (2) $\AA$
$b=11.237$ (2) $\AA$
$c=14.989$ (1) $\AA$
$V=1199.7$ (4) $\AA^{3}$
$Z=4$
$D_{x}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: empirical
$T_{\text {min }}=0.940, T_{\text {max }}=1.00$
1468 measured reflections
1441 independent reflections

1242 observed reflections
$[I \geq 3 \sigma(I)]$
$\theta_{\text {max }}=74^{\circ}$
$h=-15 \rightarrow 0$
$k=0 \rightarrow 10$
$l=-17 \rightarrow 17$
3 standard reflections frequency: 60 min intensity decay: $\mathbf{- 0 . 1 \%}$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\text {max }}=0.111 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.043$ e $\AA^{-3}$
Extinction correction:
Zachariasen (1963)
Extinction coefficient: $9.1(7) \times 10^{-6}$
Atomic scattering factors from Cromer \& Waber (1974)
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=25-35^{\circ}$
$\mu=2.78 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle cut into block
$0.73 \times 0.67 \times 0.60 \mathrm{~mm}$
Colorless

1394 observed reflections
$[I \geq 3 \sigma(I)]$
$\theta_{\text {max }}=74^{\circ}$
$h=-8 \rightarrow 0$
$k=-14 \rightarrow 0$
$l=0 \rightarrow 18$
3 standard reflections frequency: 60 min intensity decay: none

## Refinement

Refinement on $F$
$R=0.030$ (or 0.045 )
$w R=0.041$ (or 0.063)
$S=1.92$ (or 2.97)
1394 reflections
197 parameters
Only coordinates of H atoms refined ( $\mathrm{O}-\mathrm{H} 0.74-0.80$, C-H 0.82-1.09 $\AA$ )
$w=1 / \sigma^{2}\left(F_{o}\right)$
$(\Delta / \sigma)_{\text {max }}=0.02$
$\Delta \rho_{\text {max }}=0.180$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.239 \mathrm{e}^{-3} \AA^{-3}$
Extinction correction: Zachariasen (1963)
Extinction coefficient: $1.36(3) \times 10^{-5}$
Atomic scattering factors from Cromer \& Waber (1974)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $B_{\text {eq }}=(4 / 3) \Sigma_{i} \sum_{j} \beta_{i j} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}$ |
| Structure (2) |  |  |  |  |
| Cl | 0.1149 (1) | 0.17031 (5) | 0.27404 (7) | 4.45 (2) |
| Ol | -0.4738 (4) | 0.0785 (2) | 0.3517 (3) | 6.41 (7) |
| 02 | -0.5833 (4) | -0.0332 (2) | 0.2520 (3) | 6.85 (7) |
| 03 | -0.1754 (4) | 0.0226 (1) | 0.1510 (2) | 4.35 (5) |
| N1 | -0.1685 (4) | -0.1512 (2) | 0.0711 (2) | 3.28 (5) |
| C1 | -0.2087 (4) | -0.0190 (2) | 0.3360 (2) | 3.48 (5) |
| C2 | -0.1299 (4) | -0.0438 (2) | 0.2307 (2) | 3.13 (5) |
| C3 | -0.2248 (4) | -0.1281 (2) | 0.1836 (2) | 2.98 (5) |
| C4 | -0.1569 (5) | -0.1958 (2) | 0.2726 (3) | 3.96 (6) |
| C5 | -0.2450 (6) | -0.1735 (2) | 0.3756 (3) | 4.60 (7) |
| C6 | -0.1636 (5) | -0.0888 (2) | 0.4237 (2) | 4.28 (7) |
| C7 | -0.4432 (5) | 0.0061 (2) | 0.3069 (3) | 3.83 (6) |
| C8 | -0.3112 (6) | -0.1023 (2) | -0.0210 (3) | 4.93 (8) |
| C9 | -0.2070 (6) | -0.2431 (2) | 0.0458 (3) | 5.12 (8) |
| C10 | 0.0591 (5) | -0.1335 (2) | 0.0693 (3) | 4.65 (7) |
| HO1 | -0.602 (7) | 0.080 (3) | 0.338 (4) | $10 \dagger$ |
| HO3 | -0.107 (5) | 0.068 (2) | 0.177 (3) | $5.8 \dagger$ |
| Structure (3) |  |  |  |  |
| Cl | 0.800 | 0.55262 (7) | 0.800 | 3.93 (1) |
| 01 | 0.4919 (2) | 1.1395 (2) | 0.7411 (1) | 4.55 (3) |
| O2 | 0.4699 (2) | 0.9042 (2) | 0.6537 (1) | 4.54 (4) |
| O3 | 0.4059 (1) | 1.2318 (2) | 0.4771 (1) | 3.36 (3) |
| N1 | 0.5599 (1) | 1.4934 (2) | 0.4574 (1) | 2.72 (3) |
| C1 | 0.5988 (2) | 1.1143 (3) | 0.6419 (2) | 2.89 (4) |
| C2 | 0.5312 (2) | 1.2633 (2) | 0.5667 (1) | 2.54 (4) |
| C3 | 0.6153 (2) | 1.3355 (2) | 0.5259 (1) | 2.44 (4) |
| C4 | 0.6464 (2) | 1.2127 (3) | 0.4617 (2) | 3.08 (4) |
| C5 | 0.7172 (2) | 1.0703 (3) | 0.5410 (2) | 3.46 (4) |
| C6 | 0.6372 (2) | 0.9907 (3) | 0.5826 (2) | 3.32 (4) |
| C7 | 0.5141 (2) | 1.0381 (3) | 0.6784 (2) | 3.11 (4) |
| C8 | 0.4944 (2) | 1.5919 (3) | 0.5029 (2) | 3.83 (5) |
| C9 | 0.6686 (2) | 1.5922 (3) | 0.4698 (2) | 3.38 (4) |
| C10 | 0.4696 (3) | 1.4628 (3) | 0.3326 (2) | 4.49 (6) |
| HO1 | 0.444 (2) | 1.096 (3) | 0.751 (2) | $4.4 \dagger$ |
| H03 | 0.404 (3) | 1.159 (4) | 0.439 (2) | 5.9† |
| Structure (4) |  |  |  |  |
| Cl | 0.58061 (7) | 1.00084 (4) | 0.84718 (3) | 3.532 (9) |
| O1 | 0.5995 (2) | 0.7673 (1) | 0.9472 (1) | 4.18 (3) |
| 02 | 0.7885 (3) | 0.6891 (1) | 0.8454 (1) | 5.13 (4) |
| 03 | 0.8533 (3) | 0.3827 (1) | 1.0015 (1) | 4.55 (3) |
| N1 | 0.8584 (2) | 0.3359 (1) | 0.7992 (1) | 2.61 (3) |
| C1 | 0.7066 (3) | 0.5722 (2) | 0.9737 (1) | 2.72 (3) |
| C2 | 0.8288 (3) | 0.4718 (2) | 0.9352 (1) | 2.74 (3) |
| C3 | 0.7285 (2) | 0.4162 (2) | 0.8553 (1) | 2.39 (3) |
| C4 | 0.5453 (3) | 0.3585 (2) | 0.8852 (1) | 3.28 (4) |
| C5 | 0.4209 (3) | 0.4573 (2) | 0.9230 (2) | 3.87 (4) |
| C6 | 0.5120 (3) | 0.5255 (2) | 0.9991 (1) | 3.57 (4) |
| C7 | 0.7022 (3) | 0.6808 (2) | 0.9142 (1) | 2.75 (3) |
| C8 | 0.7489 (3) | 0.2753 (2) | 0.7267 (1) | 3.97 (4) |
| C9 | 1.0040 (4) | 0.4123 (2) | 0.7548 (2) | 4.38 (4) |
| C10 | 0.9558 (3) | 0.2406 (2) | 0.8516 (2) | 3.90 (4) |
| HO1 | 0.603 (3) | 0.819 (2) | 0.916 (2) | $5.4 \dagger$ |
| HO3 | 0.928 (3) | 0.413 (2) | 1.035 (2) | $5.9 \dagger$ |

$\dagger$ Fixed at 1.3 times the value of heavy atom to which it is bonded.

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

| Structure | $(1)^{a}$ | (2) | (3) | (4) |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\mathrm{O} 1-\mathrm{C} 7$ | $1.324(10)$ | $1.306(4)$ | $1.328(3)$ | $1.313(2)$ |
| $\mathrm{O} 2-\mathrm{C} 7$ | $1.203(10)$ | $1.180(4)$ | $1.199(3)$ | $1.204(3)$ |
| $\mathrm{O} 3-\mathrm{C} 2$ | $1.419(10)$ | $1.426(3)$ | $1.412(2)$ | $1.421(2)$ |
| $\mathrm{N} 1-\mathrm{C} 3$ | $1.518(10)$ | $1.545(4)$ | $1.541(2)$ | $1.542(2)$ |
| $\mathrm{N} 1-\mathrm{C} 8$ |  | $1.508(4)$ | $1.497(4)$ | $1.500(3)$ |
| $\mathrm{N} 1-\mathrm{C} 9$ |  | $1.499(4)$ | $1.506(3)$ | $1.502(3)$ |
| $\mathrm{N} 1-\mathrm{C} 10$ |  | $1.493(4)$ | $1.498(3)$ | $1.498(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.529(11)$ | $1.537(4)$ | $1.540(3)$ | $1.537(3)$ |


| 1164 |  |  | THREE ISOMERS |  |
| :---: | :---: | :---: | :---: | :---: |
| C1-C6 |  | 1.527 (4) | 1.528 (4) | 1.530 (3) |
| $\mathrm{Cl}-\mathrm{C} 7$ | 1.507 (11) | 1.523 (4) | 1.516 (4) | 1.513 (3) |
| C2-C3 | 1.519 (11) | 1.530 (4) | 1.537 (3) | 1.529 (2) |
| C3-C4 |  | 1.528 (4) | 1.519 (3) | 1.524 (3) |
| C4-C5 |  | 1.532 (6) | 1.528 (3) | 1.529 (3) |
| C5-C6 |  | 1.515 (4) | 1.527 (4) | 1.520 (3) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 8$ |  | 109.0 (2) | 111.6 (2) | 110.4 (1) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 9$ |  | 110.9 (2) | 107.6 (1) | 108.8 (1) |
| C3-N1-C10 |  | 112.7 (2) | 112.6 (2) | 114.2 (1) |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$ |  | 111.0 (2) | 112.7 (2) | 110.8 (1) |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$ | 111.5 (6) | 110.9 (2) | 109.0 (2) | 112.5 (2) |
| C6-C1-C7 |  | 112.5 (3) | 111.2 (2) | 113.9 (2) |
| O3-C2-C1 | 108.7 (7) | 109.3 (2) | 113.7 (2) | 108.9 (1) |
| O3-C2-C3 | 111.3 (7) | 112.4 (2) | 113.6 (2) | 108.4 (1) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 107.2 (6) | 111.4 (2) | 108.6 (2) | 109.3 (1) |
| N1-C3-C2 | 116.8 (7) | 113.2 (2) | 112.3 (2) | 112.7 (1) |
| N1-C3-C4 |  | 112.7 (2) | 112.1 (2) | 115.2 (1) |
| $\mathrm{Ol}-\mathrm{C} 7-\mathrm{O} 2$ | 123.3 (8) | 122.7 (3) | 123.0 (3) | 123.4 (2) |
| $\mathrm{O} 1-\mathrm{C} 7-\mathrm{Cl}$ | 111.8 (7) | 111.2 (2) | 111.5 (2) | 112.7 (2) |
| $\mathrm{O} 2-\mathrm{C} 7-\mathrm{Cl}$ | 124.9 (7) | 126.2 (3) | 125.5 (3) | 123.8 (2) |
| C2-C3-C4 |  | 108.4 (2) | 112.3 (2) | 110.1 (1) |
| C3-C4-C5 |  | 109.1 (3) | 108.9 (2) | 107.2 (2) |
| C4-C5-C6 |  | 111.6 (3) | 110.7 (2) | 113.4 (2) |
| $\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$ |  | 111.8 (2) | 110.9 (2) | 111.9 (2) |
| $\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$ |  | 55.0 (3) | -53.6 (2) | 56.6 (2) |
| $\mathrm{C} 7-\mathrm{Cl}-\mathrm{C} 2-\mathrm{O} 3$ | 73.4 | 53.9 (3) | -50.2 (2) | 169.6 (2) |
| $\mathrm{C7}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$ | -166.2 | -70.9 (3) | -177.6 (2) | -72.1 (2) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ |  | -51.4 (3) | 54.5 (3) | -51.3 (2) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$ | 22.7 | 50.7 (4) | 116.9 (2) | -1.83 (3) |
| $\mathrm{O3-C2}-\mathrm{C} 3-\mathrm{N} 1$ | -66.4 | 51.0 (3) | 56.8 (2) | -74.9 (2) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$ | 174.8 | 174.1 (2) | -175.6 (1) | 166.4 (1) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ |  | -60.1 (3) | 57.0 (2) | -63.4 (2) |
| C2-C3-C4-C5 |  | 61.4 (3) | -60.2 (2) | 62.2 (2) |
| C3-C4-C5-C6 |  | -59.5 (3) | 58.9 (2) | -57.0 (2) |
| C4-C5-C6-Cl |  | 54.4 (4) | -56.5 (2) | 52.7 (2) |
| $\mathrm{Cl} \cdots \mathrm{HOl}$ | 1.83 | 2.31 (4) | 2.24 (4) | 2.30 (3) |
| Cl. . ${ }^{\text {Ol }}$ | 3.00 | 2.988 (3) | 2.973 (2) | 3.025 (2) |
| Cl. . HO 3 | 2.23 | 2.31 (3) | 2.40 (3) | 5.96 (3) ${ }^{\text {b }}$ |
| $\mathrm{Cl} \cdot \ldots \mathrm{O}$ | 3.06 | 3.168 (2) | 3.130 (3) | 5.246 (2) ${ }^{\text {b }}$ |
| HO1 $\cdots$. $\mathrm{Cl} \cdots \mathrm{HO} 3$ | 84 | 95 (1) | 100 (1) |  |
| O1... $\mathrm{HOL} \cdots \mathrm{Cl}$ | 169 | 141 (4) | 161 (3) | 167 (3) |
| O3...HO3...Cl | 138 | 168 (3) | 153 (3) |  |

(a) Data from Tomita, Urabe, Kim \& Fujiwara (1974). (b) Distances are much too long for hydrogen bonding.

The space groups for structures (2) ( $P 2_{1} / n$ ) and (4) $\left(P 2_{1} 2_{1} 2_{1}\right)$ were uniquely defined by their systematic absences. The space group for structure (3) ( $C c$ ) was not uniquely defined by the systematic absences but was proven to be correct by the successful structure refinement. The structure solutions and refinements were carried out using MolEN (Fair, 1990). Both linear decay corrections and empirical absorption corrections were applied to the data. The chloride ions were located in the Patterson maps and the remainder of the atoms were located by difference Fourier syntheses. All non-H atoms were refined anisotropically. The H atoms were also refined with fixed isotropic thermal parameters. Data were weighted using a nonPoisson scheme with an experimental uncertainty factor of 0.03 for all three structures. A secondary-extinction correction was applied and the extinction coefficient was refined. In the last stage of the refinements, no parameter varied by more than 0.02 of its standard deviation. The final difference Fourier maps had no interpretable peaks. For the noncentrosymmetric space groups of (3) and (4), both enantiomers were refined, and $R, w R$ and $S$ are reported for both refinements. Data and figures are for the enantiomers with the lower values. Corrections for anomalous dispersion were taken from Cromer (1974) and applied to the chloride ions.
© 1995 International Union of Crystallography
Printed in Great Britain - all rights reserved
ORTEP (Johnson, 1976) plots of (2), (3) and (4) are given in Figs. $1(a), 1(b)$ and $1(c)$, respectively. Unit-cell diagrams for (2), (3) and (4) are given in Figs. 2(a), 2(b) and 2(c). Note that, while (1) contains the $(2 R)$ configuration [numbered as in (2)-(4)], the configurations illustrated in Figs. $1(a-c)$ for (2)(4) are $(1 S, 2 S, 3 S),(1 R, 2 S, 3 S)$, and $(1 S, 2 R, 3 S)$, respectively.

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). Program used to solve structure: MolEN (Fair, 1990). Program used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN.

This work was supported by a grant (HL44668) to WJB from the National Institutes of Health.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1049). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Brouillette, W. J., Saeed, A., Abuelyaman, A., Hutchison, T. L., Wolkowicz, P. E. \& McMillin, J. B. (1994). J. Org. Chem. 59, 4297-4303.
Colucci, W. J. \& Gandour, R. D. (1988). Bioorg. Chem. 16, 307-334.
Colucci, W. J., Gandour, R. D. \& Mooberry, E. A. (1986). J. Am. Chem. Soc. 108, 7141-7147.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor: Kluwer Academic Publishers, Dordrecht.)
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPП. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Tomita, K., Urabe, K., Kim, Y. B. \& Fujiwara, T. (1974). Bull. Chem. Soc. Jpn, 47, 1988-1993.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1995). C51, 1164-1167

## 4,4'-Azoxydianisole at 203 K

## Chafic Chebli and François Brisse

Département de Chimie, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C $3 J 7$
(Received 29 August 1994; accepted 25 October 1994)

## Abstract

The crystal structure determination of the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, reinvestigated using low-

